AllCanMath

CLASS 10 MATH TEST PAPER 6

Class 10 - Mathematics

Time Allowed: 1 hour			Maximum Marks: 30
Section A			
1.	If $a = 2^3 \times 3, b = 2 \times 3 \times 5, c = 3^n \times 5$ and LCM (a, b, c) $= 2^3 \times 3^2 \times 5$, then n = [1		
	a) 1	b) 4	
	c) 3	d) 2	
2.	The LCM of smallest 2-digit number and smallest composite number is		[1]
	a) 4	b) 20	
	c) 40	d) 12	
3.	If α , β are the zeros of polynomial f(x) = x ² - p (x + 1) - c, then (α + 1) (β + 1) =		[1]
	a) 1 + c	b) c	
	c) c – 1	d) 1 – c	
4.	The zeroes of the polynomial x^2 - 3x - m (m + 3) are:		
	a) –m, –(m + 3)	b) m, –(m + 3)	
	c) –m, m + 3	d) m, m + 3	
5.	The pair of linear equations $2x = 5y + 6$ and $15y = 6x - 18$ represents two lines which are:		[1]
	a) either intersecting or parallel	b) intersecting	
	c) parallel	d) coincident	
6.	5. If the pair of equations $3x - y + 8 = 0$ and $6x - ry + 16 = 0$ represent coincident lines, then the value of r is:		
	a) $\frac{1}{2}$	b) $-\frac{1}{2}$	
	c) 2	d) -2	
7.	If α and β are the roots of $ax^2 + bx + c = 0$, then the wrong statement is		[1]
	a) $lpha^2+eta^2=rac{b^2-2ac}{a^2}$	b) $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{-b}{c}$	
	c) $\alpha + \beta = \frac{b}{a}$	d) $\alpha\beta = rac{c}{a}$	
8.	If the quadratic equation $9x^2 + bx + \frac{1}{4} = 0$ has equal roots, then the value of b is:		[1]
	a) 3 only	b) 0	
	c) -3 only	d) ± 3	
9.	Assertion (A): $P(x) = 4x^3 - x^2 + 5x^4 + 3x - 2$ is a poly	ynomial of degree 3.	[1]
Reason (R): The highest power of x in the polynomial $P(x)$ is the degree of the polynomia			
	a) Both A and R are true and R is the correct explanation of A.	b) Both A and R are true but R is not t correct explanation of A.	the

AllCanMath

c) A is true but R is false.

d) A is false but R is true.

10. **Assertion (A):** System of equations x + py = 6 and 2x + 3y = 8 can never have infinite solutions for any real **[1]** value of k.

Reason (R): Condition of inconsistency for system of linear equation in two variables is $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$.

- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.
- c) A is true but R is false. d) A is false but R is true.

Section B

11.Find the HCF and LCM of 90 and 144 by the method of prime factorization.[2]12.Prove that $(5 - 3\sqrt{2})$ is an irrational number, given that $\sqrt{2}$ is irrational number.[2]13.If α and β are the zeroes of the polynomial $4x^2 - 2x + (k - 4)$ and $\alpha = \frac{1}{\beta}$, find the value of k.[2]14.Solve for x: $\frac{1}{x} - \frac{1}{x-2} = 3$; $x \neq 0, 2$ [2]

Section C

15. Find the zeroes of the quadratic polynomial $7y^2 - \frac{11}{3}y - \frac{2}{3}$ and verify the relationship between the zeroes and the **[3]** coefficients.

OR

Find the zeroes of the polynomial $v^2 + 4\sqrt{3}v - 15$ by factorisation method and verify the relationship between the zeroes and coefficient of the polynomials.

- 16. Determine graphically the coordinates of the vertices of the triangle, the equation of whose sides are y = x, 3y = x and x + y = 8. [3]
- 17. The numerator of a fraction is 3 less than its denominator. If 2 is added to both the numerator and the [3] denominator, then the sum of the new fraction and original fraction is $\frac{29}{20}$. Find the original fraction.
- 18. ABCD is a trapezium in which $AB \| DC$. P and Q are points on sides AD and BC such that $PQ \| AB$. If PD= [3] 18, BQ = 35 and QC= 15, find AD.

OR

In the figure, if $\triangle ABC \sim \triangle DEF$ and their sides are of lengths (in cm) as marked along them, then find the lengths of the sides of each triangle.

