AllCanMath

MATH PRACTICE PAPER - 1

Class 10 - Mathematics

Time Allowed: 1 hour Maximum Marks: 37 Section A If $a = (2^2 \times 3^3 \times 5^4)$ and $b = (2^3 \times 3^2 \times 5)$ then HCF (a, b) = ? [1] 1. b) 90 a) 360 c) 180 d) 540 If $\frac{241}{4000} = \frac{241}{2^m \times 5^n}$, then 2. [1] a) m = 3 and n = 2b) m = 5 and n = 3c) m = 2 and n = 5d) m = 4 and n = 5The product of two numbers is 1600 and their HCF is 5. The LCM of the numbers is 3. [1] b) 8000 a) 1600 d) 320 c) 1605 4. If two numbers do not have common factor (other than 1), then they are called [1] a) prime numbers b) co-prime numbers c) composite numbers d) twin primes If α and β are the zeroes of the polynomial $3x^2 + 11x - 4$, then the value of $\frac{1}{\alpha} + \frac{1}{\beta}$ is [1] 5. a) $\frac{13}{4}$ b) $\frac{12}{4}$ c) $\frac{11}{4}$ d) $\frac{15}{4}$ [1] The zeroes of the polynomial $3x^2 + 11x - 4$ are: 6. a) $\frac{-1}{3}$, -4 b) $\frac{1}{3}$, -4 d) $\frac{1}{3}$, 4 c) $\frac{-1}{3}$, 4 For what value of k, do the equations 7. [1] 3x - y + 8 = 0and 6x - ky = -16represent coincident lines? a) –2 b) 2 d) $\frac{1}{2}$ c) $-\frac{1}{2}$ 8. If a pair of linear equation is consistent, then the lines will be [1] a) always intersecting b) intersecting or coincident d) parallel c) always coincident The roots of the quadratic equation $\frac{x^2-8}{x^2+20} = \frac{1}{2}$ are [1] 9.

1/2

	a) ±3	b) ±4	
	c) ±2	d) ±6	
10.	0. If the roots of the equation $(a - b)x^2 + (b - c)x + (c - a) = 0$ are equal. Then		[1]
	a) 2c = a + b	b) 2a= b+ c	
	c) $2b = a + c$	d) $\frac{1}{b} = \frac{1}{a} + \frac{1}{c}$	
Section B			
11.	Find HCF of 44, 96 and 404 by prime factorization method. Hence find their LCM.		[2]
12.	The traffic lights at three different road crossings chan	nge after every 48 seconds, 72 seconds and 108 seconds	[2]
	respectively. If they change simultaneously at 7 a.m., at what time will they change together next?		
13.	If $lpha$ and eta are the zeroes of a polynomial x ² - 4 $\sqrt{3}$ x + 3, then find the value of $lpha+eta-lphaeta$		[2]
14.	Find the zeroes of quadratic polynomial $4u^2$ + 8u and verify the relationship between the zeroes and their		[2]
	coefficients.		
15.	Solve for x and y: $x + y = 6$, $2x - 3y = 4$		[2]
16.	Solve the following system of linear equation by substitution method:		[2]
	$2x - y = 2 \dots (i)$		
	x + 3y = 15(ii)		
17.	Determine the nature of the roots of quadratic equation	on: $12x^2 - 4\sqrt{15}x + 5 = 0.$	[2]
18.	Solve the quadratic equation by factorization:		[2]
	$x^2+\left(a+rac{1}{a} ight)x+1=0$		
Section C			
19.	The sum of the squares of two consecutive odd positi	ve integers is 394. Find them.	[3]
20.	Solve: $\frac{2}{(x+1)} + \frac{3}{2(x-2)} = \frac{23}{5x}, x \neq 0, -1, 2.$		[3]

Section D

21. A two-digit number is such that the product of its digits is 20. If 9 is added to the number, the digits interchange [5] their places. Find the number.