AllCanMath

TEST PAPER-1 (REAL NUMBER, POLYNOMIALS, LINEAR EQUATIONS)

Class 10 - Mathematics

Time Allowed: 1 hour			aximum Marks: 30	
	Se	ection A		
1.	The prime factorisation of the number 2304 is		[1]	
	a) $2^8 \times 3^1$	b) $2^8 \times 3^2$		
	c) $2^7 \times 3^2$	d) $2^7 \times 3^3$		
2.	2. The ratio of HCF to LCM of the least composite number and the least prime number is:			
	a) 1 : 1	b) 2 : 1		
	c) 1 : 2	d) 1 : 3		
3.	Which of the followings is an irrational number?		[1]	
	a) $(\sqrt{2}-1)^2$	b) $\left(2\sqrt{3} - \frac{1}{\sqrt{3}}\right)^2$		
	c) $\frac{(\sqrt{2}+5\sqrt{2})}{\sqrt{2}}$	d) $\sqrt{2} - (2 + \sqrt{2})$		
4.	If the sum of the zeroes of the quadratic polynomial	$kx^2 + 2x + 3k$ is equal to their product, then k equals.	[1]	
	a) $\frac{1}{3}$	b) $\frac{2}{3}$		
	c) $-\frac{2}{3}$	d) $-\frac{1}{3}$		
5.	If <i>α</i> , <i>β</i> are the zeros of the polynomial $f(x) = x^2 - p(x)$	$(\alpha + 1) - c$ such that $(\alpha + 1) (\beta + 1) = 0$, then $c = 0$	[1]	
	a) –1	b) 0		
	c) 1	d) 2		
6.	If the pair of equations $3x - y + 8 = 0$ and $6x - ry + 1$	6 = 0 represent coincident lines, then the value of r is:	[1]	
	a) $\frac{1}{2}$	b) $-\frac{1}{2}$		
	c) 2	d) -2		
7.	The graphs of the equations $2x + 3y - 2 = 0$ and $x - 2$	2y - 8 = 0 are two lines which are	[1]	
	a) perpendicular to each other	b) parallel		
	c) intersecting exactly at one point	d) coincident		
8.	Assertion (A): The system of linear equations 3x +	5y - 4 = 0 and $15x + 25y - 25 = 0$ is inconsistent.	[1]	
	Reason (R): The pair of linear equations $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ is inconsistent if			
	$rac{a_1}{a_2}=rac{b_1}{b_2} eq rac{c_1}{c_2}.$			
	a) Both A and R are true and R is the correct	b) Both A and R are true but R is not the		
	explanation of A.	correct explanation of A.		
	c) A is true but R is false.	d) A is false but R is true.		

AllCanMath

Section B

9.	If 1 is a zero of the polynomial p (x) = $ax^2 - 3(a - 1)x - 1$, then find the value of a.	[2]
10.	Solve the pair of equations $x = 5$ and $y = 7$ graphically.	[2]

10. Solve the pair of equations x = 5 and y = 7 graphically.

OR

Solve for x and y : x + y = 6, 2x - 3y = 4.

Section C

- Prove that $3 + \sqrt{2}$ is an irrational number, given that $\sqrt{2}$ is an irrational number. 11.
- [3] If α and β are zeroes of the quadratic polynomial $4x^2 + 4x + 1$, then form a quadratic polynomial whose zeroes 12. are 2α and 2β .

OR

Find a quadratic polynomial whose sum and product of the zeroes are $-2\sqrt{3}$, -9 respectively. Also find the zeroes of the polynomial by factorisation.

If 2 is added to the numerator of a fraction, it reduces to $\frac{1}{2}$ and if 1 is subtracted from the denominator, it 13. [3] reduces to $\frac{1}{3}$. Find the fraction.

Section D

14. Read the text carefully and answer the questions:

Lokesh, a production manager in Mumbai, hires a taxi everyday to go to his office. The taxi charges in Mumbai consists of a fixed charges together with the charges for the distance covered. His office is at a distance of 10 km from his home. For a distance of 10 km to his office, Lokesh paid ₹ 105. While coming back home, he took another route. He covered a distance of 15 km and the charges paid by him were ₹ 155.

- What are the fixed charges? (a)
- What are the charges per km? (b)
- If fixed charges are ₹ 20 and charges per km are ₹ 10, then how much Lokesh have to pay for travelling a (c) distance of 10 km?
- (d) Find the total amount paid by Lokesh for travelling 10 km from home to office and 25 km from office to home. [Fixed charges and charges per km are as in (i) & (ii).

Section E

Solve the pair of linear equations x - 2y + 4 = 0 and x + y = 2 graphically. 15.

[5]

[3]

[4]