AllCanMath

CLASS 10 MATH TEST PAPER 3

Class 10 - Mathematics

Time Al	lowed: 1 hour and 30 minutes	Maximum Marl	cs: 40
		Section A	
1.	If $rac{\sqrt{3}-1}{\sqrt{3}+1}=a-b\sqrt{3}$,then		[1]
	a) a = b = 1	b) a = 2, b = 1	
	c) a = 2, b = -1	d) a = - 2, b = 1	
2.	The HCF of two numbers is 27 and their LCM is 162. If one of the numbers is 54, what is the other number is		[1]
	a) 9	b) 81	
	c) 45	d) 36	
3.	If $a=2^3 imes3, b=2 imes3 imes5, c=3^n imes5$ and LCM (a, b, c) $=2^3 imes3^2 imes5$, then n =		[1]
	a) 1	b) 4	
	c) 3	d) 2	
4.	The number of polynomials having zeroes -3	and 5 is:	[1]
	a) infinite	b) at most two	
	c) only one	d) exactly two	
5.	The zeros of the polynomial $4x^2+5\sqrt{2}x-3$ are		[1]
	a) $-3\sqrt{2}, \frac{\sqrt{3}}{2}$	b) $\frac{-3\sqrt{2}}{2}, \frac{\sqrt{2}}{4}$	
	c) $-3\sqrt{2}, \frac{\sqrt{2}}{2}$	d) $-3\sqrt{2},\sqrt{2}$	
6.	The sum and product of the zeroes of the polynomial x^2 - 6x + 8 are respectively		[1]
	a) $\frac{-3}{2}$ and 1	b) $\frac{-3}{2}$ and -1	
	c) $\frac{3}{2}$ and 1	d) 6 and 8	
7.	The value of p if (-2, p) lies on the line represented by the equation $2x - 3y + 7 = 0$, is		[1]
	a) -1	b) $\frac{13}{2}$	
	c) $-\frac{13}{2}$	d) 1	
8.	The system of equations $x - 4y = 8$, $3x - 12y = 8$	= 24	[1]
	a) has infinitely many solutions	b) may or may not have a solution	
	c) has no solution	d) has a unique solution	
9.	The value of k for which the equations $3x - y + 8 = 0$ and $6x + ky = -16$ represent coincident lines, is:		[1]
	a) 2	b) $-\frac{1}{2}$	
	c) $\frac{1}{2}$	- d) -2	
10.	Assertion (A): The perimeter of \triangle ABC is a rational number.		[1]

AllCanMath

1/3

Reason (R): The sum of the squares of two rational numbers is always rational.

- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.

c) A is true but R is false.

- d) A is false but R is true.
- Assertion (A): The graph y = f(x) is shown in figure, for the polynomial f(x). The number of zeros of f(x) is 3. [1]
 Reason (R): The number of zero of the polynomial f(x) is the number of point of which f(x) cuts or touches the axes.

- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.

c) A is true but R is false.

d) A is false but R is true.

Section B

- 12. Three bells ring at intervals of 6, 12 and 18 minutes. If all the three bells rang at 6 a.m., when will they ring [2] together again?
- 13. If α and β are the zeros of the quadratic polynomial $f(x) = x^2 p(x + 1) c$, show that $(\alpha + 1)(\beta + 1) = 1 c$. [2]
- 14. In a given figure, ABCD is a rectangle. Find the values of x and y.

Section C

- 15. Prove that $\sqrt{2}$ is an irrational number.
- 16. One zero of the polynomial x^2 2x (7p + 3) is -1, find the value of p and the other zero.
- 17. Seven times a two digit number is equal to four times the number obtained by reversing the order of its digits. If **[3]** the difference between the digits is 3, determine the number.

Section D

18. **Read the text carefully and answer the questions:**

While playing in a garden, Samaira saw a honeycomb and asked her mother what is that. Her mother replied that it's a honeycomb made by honey bees to store honey. Also, she told her that the shape of the honeycomb formed

AllCanMath

[2]

[3] [3]

[4]

is a mathematical structure. The mathematical representation of the honeycomb is shown in the graph.

- (a) How many zeroes are there for the polynomial represented by the graph given?
- (b) Write the zeroes of the polynomial.
- (c) If the zeroes of a polynomial $x^2 + (a + 1) x + b$ are 2 and -3, then determine the values of a and b.
- (d) If the square of difference of the zeroes of the polynomial $x^2 + px + 45$ is 144, then find the value of p.

Section E

- 19. If α and β are the zeroes of the polynomial $p(x) = 6x^2 + 5x k$ satisfying the relation, $\alpha \beta = \frac{1}{6}$, then find the **[5]** value of k.
- A shopkeeper sells a saree at 8% profit and a sweater at 10% discount, thereby getting a sum of ₹ 1008. If she [5] had sold the saree at 10% profit and the sweater at 8% discount, she would have got ₹ 1028. Find the cost price of the saree and the list price (price before discount) of the sweater.

And.