AllCanMath

CLASS 10 MATH TEST PAPER 13

Class 10 - Mathematics

Time Allowed: 45 minutes Maximum Marks: 25 Section A [1] If $ax + by = a^2 - b^2$ and bx + ay = 0, then the value of x + y is: 1. a) $a^2 + b^2$ b) a - b c) a + b d) $a^2 - b^2$ The value of k for which the pair of linear equations 5x + 2y - 7 = 0 and 2x + ky + 1 = 0 don't have a solution, is: [1] 2. b) $\frac{5}{4}$ a) 5 d) $\frac{5}{2}$ c) $\frac{4}{5}$ Two lines are given to be parallel. The equation of one of these lines is 5x - 3y = 2. The equation of the second 3. [1] line can be: a) -15x - 9y = 5b) -15x + 9y = 5c) 15x + 9y = 5d) 9x - 15y = 64. The value of k, if (6, k) lies on the line represented by x - 3y + 6 = 0, is [1] b) 4 a) 12 d) -12 c) -4 [1] The roots of the quadratic equation $x^2 - 4 = 0$ is/are: 5. a) -4, 4 b) 2 only c) -2, 2 d) 4 only If the roots of the equation $(a - b)x^2 + (b - c)x + (c - a) = 0$ are equal. Then _____. [1] 6. a) 2c = a + bb) 2a= b+ c d) $\frac{1}{b} = \frac{1}{a} + \frac{1}{c}$ c) 2b = a + cThe ratio of the sum and product of the roots of the quadratic equation $5x^2 - 6x + 21 = 0$ is: [1] 7. a) 5:21 b) 21:5 c) 7:2 d) 2:7 If $\sin \theta = 1$, then the value of $\frac{1}{2} \sin \left(\frac{\theta}{2} \right)$ is: [1] 8. a) $\frac{1}{\sqrt{2}}$ b) 0 c) $\frac{1}{2\sqrt{2}}$ d) $\frac{1}{2}$ If cosec A = $\frac{7}{5}$, then value of tan A·cos A is: 9. [1] a) $\frac{2\sqrt{6}}{5}$ b) $\frac{24}{49}$

AllCanMath

18.	. Read the following text carefully and answer the questions that follow:		[4]
	Se	ection B	
	c) A is true but R is false.	d) A is false but R is true.	
	explanation of A.	correct explanation of A.	
	Reason (K): $\tan \theta = \frac{\tan \theta}{\cos \theta}$	b) Both A and R are true but R is not the	
17.	Assertion (A): In a right-angled triangle, if $\cos\theta = \frac{1}{2}$ and $\sin\theta = \frac{\sqrt{2}}{2}$, then $\tan\theta = \sqrt{3}$ Reason (B): $\tan\theta = \frac{\sin\theta}{2}$		[1]
15	c) A is true but R is false.	d) A is false but R is true.	[4]
	explanation of A.	correct explanation of A.	
	a) Both A and R are true and R is the correct	b) Both A and R are true but R is not the	
	$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}.$		
	Reason (R): The pair of linear equations $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ is inconsistent if $a_1 = b_1 + c_1$		
16.	Assertion (A): The system of linear equations $3x + 5y - 4 = 0$ and $15x + 25y - 25 = 0$ is inconsistent.		[1]
	c) $\frac{4}{7}$	d) $\frac{3}{7}$	
	a) $\frac{1}{7}$	b) $\frac{2}{7}$	
15.	The probability that a non leap year selected at random will have 53 Sundays is		[1]
	c) $\frac{1}{6}$	d) $\frac{1}{12}$	
	a) $\frac{5}{18}$	b) $\frac{1}{9}$	
14.	Two dice are rolled together. What is the probability	of getting a sum greater than 10?	[1]
	c) $\frac{11}{25}$	d) $\frac{13}{25}$	
	a) $\frac{4}{5}$	b) $\frac{12}{25}$	
	probability that the number on the ticket is a multiple ~ 2		
13.	There are 25 tickets numbered as 1, 2, 3, 4, 25 res	spectively. One ticket is drawn at random. What is the	[1]
	c) 2 : 1	d) 3 : 1	
	a) 5 : 1	b) 4 : 1	
	CIII IS		
12.	The ratio of the total surface area to the lateral surface	ce area of a cylinder with base radius 80 cm and height 20	[1]
	c) 8 : 9	d) 4 : 3	
	a) 9 : 8	b) 3 : 4	
	ratio between their volumes is		
11.	The radii of the base of a cylinder and a cone are in the ratio 3 :4. If they have their heights in the ratio 2 : 3, the		[1]
	c) ₄₅ °	d) 90 ₀	
	a) 0 ₀	p) ³⁰ °	
10.	For what value of θ , $\sin^2\theta + \sin\theta + \cos^2\theta$ is equal to	2?	[1]
	c) $\frac{3}{7}$	d) $\frac{7}{5}$	_
	. 5	7	

Shreya has a field with a flowerbed and grassland. The grassland is in the shape of rectangle while flowerbed is

AllCanMath

in the shape of square. The length of the grassland is found to be 3 m more than twice the length of the

flowerbed. Total area of the whole land is 1260 m².

- i. If the length of the square is x m then find the total length of the field. (1)
- ii. What will be the perimeter of the whole figure in terms of x? (1)
- iii. Find the value of x if the area of total field is 1260 m^2 . (2)

OR

Find area of grassland and the flowerbed separately. (2)

19. Read the following text carefully and answer the questions that follow:

Governing council of a local public development authority of Dehradun decided to build an adventurous playground on the top of a hill, which will have adequate space for parking.

After survey, it was decided to build rectangular playground, with a semi-circular area allotted for parking at one end of the playground. The length and breadth of the rectangular playground are 14 units and 7 units, respectively. There are two quadrants of radius 2 units on one side for special seats.

i. What is the total perimeter of the parking area? (1)

- ii. What is the total area of parking and the two quadrants? (1)
- iii. What is the ratio of area of playground to the area of parking area? (2)

OR

Find the cost of fencing the playground and parking area at the rate of \gtrless 2 per unit. (2)