AllCanMath

CLASS 10 MATH TEST PAPER 14

Class 10 - Mathematics

Time Allowed: 1 hour Maximum Marks: 30 Section A If $a = 2^2 \times 3^x$, $b = 2^2 \times 3 \times 5$, $c = 2^2 \times 3 \times 7$ and LCM (a, b, c) = 3780, then x is equal to [1] 1. b) 0 a) 3 c) 1 d) 2 Prime factorisation of 882 is: 2. [1] b) $2 imes 3^2 imes 7^2$ a) $2^2 imes 3^3 imes 7$ d) $2^2 imes 3^2 imes 7$ c) $2^3 \times 3 \times 7^2$ 3. The ratio of HCF to LCM of the least composite number and the least prime number is: [1] b) 2 : 1 a) 1:1 d) 1 : 3 c) 1:2 If α and β are the zeros of the polynomial $f(x) = x^2 + px + q$, then a polynomial having $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ is its zero is [1] 4. b) $x^2 + qx + p$ a) $qx^2 + px + 1$ d) $px^2 + qx + 1$ c) $x^2 - px + q$ 5. If the two zeroes of a quadratic polynomial are $\pm\sqrt{5}$, then the quadratic polynomial is: [1] a) $4(x^2-5)$ b) $(x + \sqrt{5})^2$ d) $x^2 + 5$ c) $x^2 - \sqrt{5}$ A quadratic polynomial whose zeros are $\frac{3}{5}$ and $\frac{-1}{2}$, is [1] 6. a) $10x^2 - x + 3$ b) $10x^2 + x - 3$ d) $10x^2 + x + 3$ c) _{10x² - x -3} [1] If α and β are the zeroes of the polynomial ax² - 5x + c and $\alpha + \beta = \alpha\beta$ = 10, then: 7. b) $a = \frac{5}{2}, c = 1$ a) $a = \frac{1}{2}, c = 5$ d) a = 1, c = $\frac{5}{2}$ c) a = 5, c = $\frac{1}{2}$ The value of k for which the system of equations 3x - y + 8 = 0 and 6x - ky + 16 = 0 has infinitely many 8. [1] solutions, is b) $\frac{1}{2}$ a) 2

- c) $-\frac{1}{2}$ d) -2
- 9. Which out of the following type of straight lines will be represented by the system of equations 3x + 4y = 5 and [1] 6x + 8y = 7?

AllCanMath

	a) Perpendicular to each other	b) Intersecting	
	c) Coincident	d) Parallel	
10.	If am = bl and bn \neq cm, then the system of equatio	ns	[1]
	ax + by = c		
	Ix + my = n		
	a) Has a unique solution.	b) Has infinitely many solutions.	
	c) Has no solution.	d) May or may not have a solution.	
11.	If one root of the equation $3x^2 - 10x + 3 = 0$ is $\frac{1}{3}$ then the other root is		[1]
	a) $\frac{1}{3}$	b) 3	
	c) $\frac{-1}{3}$	d) -3	
12.	For what values of k, the equation $kx^2 - 6x - 2 = 0$ has real roots?		[1]
	a) $k \geq rac{-9}{2}$	b) $k \leq -5$	
	c) $k\leq -2$	b) $k \leq -5$ d) $k \leq \frac{-9}{2}$	
13.	If the discriminant of the quadratic equation $3x^2 - 2x + c = 0$ is 16, then the value of c is:		[1]
	a) $\sqrt{2}$	b) 0	
	c) 1	d) -1	
14.	If the first three terms of an A.P. are 3p - 1, 3p + 5,	5p + 1 respectively; then the value of p is:	[1]
	a) 2	b) 5	
	c) -3	d) 4	
15.	The 11 th term from the end of the A.P.: 10, 7, 4,, -62 is:		[1]
	a) -32	b) 25	
	c) 0	d) 16	
16.	The next term of the A.P. $\sqrt{18}$, $\sqrt{32}$ and $\sqrt{50}$ is		[1]
	a) $\sqrt{72}$	b) $\sqrt{84}$	
	c) $\sqrt{64}$	d) $\sqrt{80}$	
17.	The perimeters of two similar triangles ABC and PQR are 56 cm and 48 cm respectively. $\frac{PQ}{AB}$ is equal to		[1]
	a) $\frac{7}{6}$	b) $\frac{8}{7}$	
	c) $\frac{6}{7}$	d) $\frac{7}{8}$	
18.	\triangle ABC $\sim \triangle$ DEF and their perimeters are 32 cm and 24 cm respectively. If AB = 10 cm, then DE equals:		[1]
	a) 8 cm	b) 7.5 cm	
	c) $5\sqrt{3}$ cm	d) 15 cm	
19.	Assertion (A): If n th term of an A.P. is 7 - 4n, then	its common difference is -4.	[1]
	Reason (R): Common difference of an A.P. is give	$n by d = a_{n-1} - a_n$	
	a) Both A and R are true and R is the correct	b) Both A and R are true but R is not the	

AllCanMath

explanation of A.

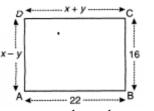
correct explanation of A.

c) A is true but R is false.

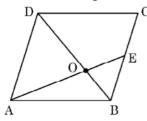
d) A is false but R is true.

20. Assertion (A): ABCD is a trapezium with DC || AB. E and F are points on AD and BC respectively, such that [1] $EF \parallel AB$. Then $\frac{AE}{ED} = \frac{BF}{FC}$.

Reason (R): Any line parallel to parallel sides of a trapezium divides the non-parallel sides proportionally.


a) Both A and R are true and R is the correct b) Both A and R are true but R is not the explanation of A. correct explanation of A. c) A is true but R is false.

d) A is false but R is true.


Section B

[2] If one zero of the polynomial $x^2 - 8x + k$ exceeds the other by 2, then find the zeroes and the value of k. 21.

22. In the figure given below, ABCD is a rectangle. Find the values of x and y.

- Solve for x: $\frac{1}{x} \frac{1}{x-2} = 3$; x $\neq 0$, 2 23.
- In an A.P, if $S_n = 3n^2 + 5n$ and $a_k = 164$, find the value of k. 24.
- 25. In the given figure, ABCD is a parallelogram. AE divides the line segment BD in the ratio 1 : 2. If BE = 1.5 cm, [2] then find the length of BC.

AllCanMath

[2]

[2]

[2]